396 research outputs found

    PHYSIOLOGICAL AND INDUCED APOPTOSIS IN SEA URCHIN LAEVAE UNDERGOING METAMORPHOSIS

    Get PDF
    Paracentrotus lividus embryos at the early pluteus stage undergo spontaneous apoptosis. Using a TUNEL (TdT-mediated dUTP Nick-End Labelling) assay on whole mount embryos, we showed that there was a different distribution of the apoptotic cells in different optical sections. Not more than 20% of cells in plutei were spontaneously apoptotic, as confirmed by the counts of dissociated ectoderm and intestine cells. Observation of larva stages closer to metamorphosis confirmed that apoptosis is a physiological event for the development of the adult. In particular, larvae at different developmental stages showed apoptotic cells in the oral and aboral arms, intestine, ciliary band and both apical and oral ganglia. Moreover, we found that the number of apoptotic cells decreased in later larva stages, possibly because in the organism approaching metamorphosis, a smaller number of cells needs to be eliminated. Furthermore, combined phorbol ester (TPA) and heat shock treatment enhanced apoptosis by increasing the number of cells involved in the phenomenon

    Adult exposures from MDCT including multiphase studies: first Italian nationwide survey.

    Get PDF
    OBJECTIVES: To evaluate the radiation dose in routine multidetector computed tomography (MDCT) examinations in Italian population. METHODS: This was a retrospective multicentre study included 5,668 patients from 65 radiology departments who had undergone common CT protocols: head, chest, abdomen, chest–abdomen–pelvis (CAP), spine and cardiac. Data included patient characteristics, CT parameters, volumetric CT dose index (CTDIvol) and dose length product (DLP) for each CT acquisition phase. Descriptive statistics were calculated, and a multi-regression analysis was used to outline the main factors affecting exposure. RESULTS: The 75th percentiles of CTDIvol (mGy) and DLP (mGy cm) for whole head were 69 mGy and 1,312 mGy cm, respectively; for chest, 15 mGy and 569 mGy cm; spine, 42 mGy and 888 mGy cm; cardiac, 7 mGy and 131 mGy cm for calcium score, and 61 mGy and 1,208 mGy cm for angiographic CT studies. High variability was present in the DLP of abdomen and CAP protocols, where multiphase examinations dominated (71 % and 73 % respectively): for abdomen, 18 mGy, with 555 and 920 mGy cm in abdomen and abdomen–pelvis acquisitions respectively; for CAP, 17 mGy, with 508, 850 and 1,200 mGy cm in abdomen, abdomen–pelvis and CAP acquisitions respectively. CONCLUSION: The results of this survey could help in the definition of updated diagnostic reference levels (DRL)

    Radiation dose from multidetector CT studies in children: results from the first Italian nationwide survey

    Get PDF
    Background Multidetector CT (MDCT) scanners have con- tributed to the widespread use of CT in paediatric imaging. However, concerns are raised for the associated radiation exposure. Very few surveys on radiation exposure from MDCT studies in children are available. Objective The aim of this study was to outline the status of radiation exposure in children from MDCT practice in Italy. Materials and methods In this retrospective multicentre study we asked Italian radiology units with an MDCT scanner with at least 16 slices to provide dosimetric and acquisition param- eters of CT examinations in three age groups (1–5, 6–10, 11– 15 years) for studies of head, chest and abdomen. The dosi- metric results were reported in terms of third-quartile volu- metric CT dose index (CTDIvol) (mGy), size-specific dose estimate (SSDE) (mGy), dose length product (DLP) (mGy cm), and total DLP for multiphase studies. These results were compared with paediatric European and adult Italian published data. A multivariate analysis assessed the association of CTDIvol with patient characteristics and scanning modalities. Results We collected data from 993 MDCT examinations performed at 25 centres. For age groups 1–5 years, 6–10 years and 11–15 years, the CTDIvol, DLP and total DLP values were statistically significantly below the values observed in our analogous national survey in adults, although the difference decreased with increasing age. CTDIvol variability among centres was statistically significant (variance = 0.07; 95% confidence interval = 0.03–0.16; P < 0.001). Conclusions This study reviewed practice in Italian centres performing paediatric imaging with MDCT scanners. The variability of doses among centres suggests that the use of standardised CT protocols should be encourage

    A possible cyclotron resonance scattering feature near 0.7 keV in X1822-371

    Get PDF
    We analyse all available X-ray observations of X1822-371 made with XMM-Newton, Chandra, Suzaku and INTEGRAL satellites. The observations were not simultaneous. The Suzaku and INTEGRAL broad band energy coverage allows us to constrain the spectral shape of the continuum emission well. We use the model already proposed for this source, consisting of a Comptonised component absorbed by interstellar matter and partially absorbed by local neutral matter, and we added a Gaussian feature in absorption at 0.7\sim 0.7 keV. This addition significantly improves the fit and flattens the residuals between 0.6 and 0.8 keV. We interpret the Gaussian feature in absorption as a cyclotron resonant scattering feature (CRSF) produced close to the neutron star surface and derive the magnetic field strength at the surface of the neutron star, (8.8±0.3)×1010(8.8 \pm 0.3) \times 10^{10} G for a radius of 10 km. We derive the pulse period in the EPIC-pn data to be 0.5928850(6) s and estimate that the spin period derivative of X1822-371 is (2.55±0.03)×1012(-2.55 \pm 0.03) \times 10^{-12} s/s using all available pulse period measurements. Assuming that the intrinsic luminosity of X1822-371is at the Eddington limit and using the values of spin period and spin period derivative of the source, we constrain the neutron star and companion star masses. We find the neutron star and the companion star masses to be 1.69±0.131.69 \pm 0.13 M_{\odot} and 0.46±0.020.46 \pm 0.02 M_{\odot}, respectively, for a neutron star radius of 10 km.In a self-consistent scenario in which X1822-371 is spinning-up and accretes at the Eddington limit, we estimate that the magnetic field of the neutron star is (8.8±0.3)×1010(8.8 \pm 0.3) \times 10^{10} G for a neutron star radius of 10 km. If our interpretation is correct, the Gaussian absorption feature near 0.7 keV is the very first detection of a CRSF below 1 keV in a LMXB. (abridged)Comment: 14 pages, 12 figures, accepted for publication in A&

    An XMM-Newton and INTEGRAL view on the hard state of EXO 1745-248 during its 2015 outburst

    Get PDF
    CONTEXT - Transient low-mass X-ray binaries (LMXBs) often show outbursts lasting typically a few-weeks and characterized by a high X-ray luminosity (Lx10361038L_{x} \approx 10^{36}-10^{38} erg/sec), while for most of the time they are found in X-ray quiescence (LX10311033L_X\approx10^{31} -10^{33} erg/sec). EXO 1745-248 is one of them. AIMS - The broad-band coverage, and the sensitivity of instrument on board of {\xmm} and {\igr}, offers the opportunity to characterize the hard X-ray spectrum during {\exo} outburst. METHODS - In this paper we report on quasi-simultaneous {\xmm} and {\igr} observations of the X-ray transient {\exo} located in the globular cluster Terzan 5, performed ten days after the beginning of the outburst (on 2015 March 16th) shown by the source between March and June 2015. The source was caught in a hard state, emitting a 0.8-100 keV luminosity of 1037\simeq10^{37}~{\lumcgs}. RESULTS - The spectral continuum was dominated by thermal Comptonization of seed photons with temperature kTin1.3kT_{in}\simeq1.3 keV, by a cloud with moderate optical depth τ2\tau\simeq2 and electron temperature kTe40kT_e\simeq 40 keV. A weaker soft thermal component at temperature kTth0.6kT_{th}\simeq0.6--0.7 keV and compatible with a fraction of the neutron star radius was also detected. A rich emission line spectrum was observed by the EPIC-pn on-board {\xmm}; features at energies compatible with K-α\alpha transitions of ionized sulfur, argon, calcium and iron were detected, with a broadness compatible with either thermal Compton broadening or Doppler broadening in the inner parts of an accretion disk truncated at 20±620\pm6 gravitational radii from the neutron star. Strikingly, at least one narrow emission line ascribed to neutral or mildly ionized iron is needed to model the prominent emission complex detected between 5.5 and 7.5 keV. (Abridged)Comment: 14 pages, 6 figure, 2 tables. Accepted for publication on A&A (21/03/2017

    GRO J1744-28: an intermediate B-field pulsar in a low mass X-ray binary

    Get PDF
    The bursting pulsar, GRO J1744-28, went again in outburst after \sim18 years of quiescence in mid-January 2014. We studied the broad-band, persistent, X-ray spectrum using X-ray data from a XMM-Newton observation, performed almost at the peak of the outburst, and from a close INTEGRAL observation, performed 3 days later, thus covering the 1.3-70.0 keV band. The spectrum shows a complex continuum shape that cannot be modelled with standard high-mass X-ray pulsar models, nor by two-components models. We observe broadband and peaked residuals from 4 to 15 keV, and we propose a self-consistent interpretation of these residuals, assuming they are produced by cyclotron absorption features and by a moderately smeared, highly ionized, reflection component. We identify the cyclotron fundamental at \sim 4.7 keV, with hints for two possible harmonics at 10.4 keV and 15.8 keV. The position of the cyclotron fundamental allows an estimate for the pulsar magnetic field of (5.27 ±\pm 0.06) ×\times 1011^{11} G, if the feature is produced at its surface. From the dynamical and relativistic smearing of the disk reflected component, we obtain a lower limit estimate for the truncated accretion disk inner radius, (\gtrsim 100 Rg_g), and for the inclination angle (18^{\circ}-48^{\circ}). We also detect the presence of a softer thermal component, that we associate with the emission from an accretion disk truncated at a distance from the pulsar of 50-115 Rg_g. From these estimates, we derive the magneto-spheric radius for disk accretion to be \sim 0.2 times the classical Alfv\'en radius for radial accretion.Comment: Accepted for publication in MNRA

    Signature of the presence of a third body orbiting around XB 1916-053

    Get PDF
    The ultra-compact dipping source \object{XB 1916-053} has an orbital period of close to 50 min and a companion star with a very low mass (less than 0.1 M_{\odot}). The orbital period derivative of the source was estimated to be 1.5(3)×10111.5(3) \times 10^{-11} s/s through analysing the delays associated with the dip arrival times obtained from observations spanning 25 years, from 1978 to 2002. The known orbital period derivative is extremely large and can be explained by invoking an extreme, non-conservative mass transfer rate that is not easily justifiable. We extended the analysed data from 1978 to 2014, by spanning 37 years, to verify whether a larger sample of data can be fitted with a quadratic term or a different scenario has to be considered. We obtained 27 delays associated with the dip arrival times from data covering 37 years and used different models to fit the time delays with respect to a constant period model.We find that the quadratic form alone does not fit the data. The data are well fitted using a sinusoidal term plus a quadratic function or, alternatively, with a series of sinusoidal terms that can be associated with a modulation of the dip arrival times due to the presence of a third body that has an elliptical orbit. We infer that for a conservative mass transfer scenario the modulation of the delays can be explained by invoking the presence of a third body with mass between 0.10-0.14 M_{\odot}, orbital period around the X-ray binary system of close to 51 yr and an eccentricity of 0.28±0.150.28 \pm 0.15. In a non-conservative mass transfer scenario we estimate that the fraction of matter yielded by the degenerate companion star and accreted onto the neutron star is β=0.08\beta = 0.08, the neutron star mass is 2.2\ge 2.2 M_{\odot}, and the companion star mass is 0.028 M_{\odot}. (Abridged)Comment: 13 pages, 9 figures. Accepted for publication in A&

    Cellular and molecular bases of biomineralization in sea urchin embryos

    Get PDF
    Sea urchin embryos construct their skeleton following a precise gene-regulated time- and space-dependent programme, in concert with factors promoting cell adhesion and differentiation. The biomineral is deposited in a privileged extracellular space produced by the fused filopodia processes of the primary mesenchyme cells, the only cells producing a set of necessary matrix proteins. More than ten years ago we showed for the first time that signals from ectoderm cells promoted the expression of one of the major skeleton matrix genes by the primary mesenchyme cells. Since then, many of the crucial steps of this complex activation cascade, from ectoderm cells to embryonic spicules, have been elucidated. The experimental production of skeleton malformations, induced by the exposure to toxic metals or ionizing radiations, served as model to dissect the molecular mechanisms leading to biomineralization. With the aim of understanding the sea urchin skeleton physiology, we analysed the expression of well-known and newly-identified biomineral-related genes, including those coding for growth and transcription factors as well as for skeleton matrix proteins. This review summarizes our recent findings on sea urchin embryo skeletogenesis, with a particular attention to the role played by cellular and molecular signaling, approached by the use of experimentally induced skeleton malformations
    corecore